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2-Aryl-4-quinolones are versatile synthetic intermediates and several articles continue to appear in lit-
erature describing their synthesis, chemical transformation, structural properties, and biological activ-
ities. Their versatility as synthetic intermediates is a consequence of 4-quinolone moiety, which
contains several reactive centers (positions 1, 3, and 4) for possible functionalization and can also ena-
ble different degree of unsaturation. In this review, we describe methods developed to-date for the syn-
thesis of 2-arylquinolin-4(1/)-ones and their N-alkylated and O-alkylated derivatives.
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1. INTRODUCTION

2-Aryl-4-quinolone moiety constitutes important chem-
ical unit in a large variety of naturally occurring com-
pounds and it plays an extremely important role in syn-
thetic and medicinal chemistry. Most of the 2-aryl-4-quin-
olones and their 2-arylquinoline derivatives are widely
distributed in the plant family Rutaceae. Eduleine or 7-
methoxy-1-methyl-2-phenylquinolin-4(1H)-one (I) (R, =
OCHs;; Ry, Rs, Ry, Rs = H), for example, was first iso-
lated from the bark of the Mexican tree Casimiroa edulis
[1] and the bark of Lunasia quercifolia (Warb) [2]. Edul-
eine and its 4-methoxy-1-methyl-2-(3,4-methylenedioxy-
phenyl)quinolin-4(1H)-one analogue (II) (R; = OCHS;;
R,, Rs = H; R3+R; = —OCH,0O—) were also isolated
from the leaves of Lunasia amara Blanco of the Philip-
pine origin [2]. Graveoline (III) (R, Ry, Rs = H; R3+Ry
= —OCH,0—), on the other hand, was first isolated from
Ruta graveolens and its substituted derivatives methoxy-
graveoline (IV) (R;, R,, Rs = OCH;; R3;+R; =
—OCH,0—) and 3,8-dimethoxygraveoline (V) (R = R’ =
OMe) were isolated from the roots of the Brazilian plant
Esenbeckia grandiflora [3]. The isomeric 4-methoxy-2-
phenylquinoline (VI) (R, R, = H) and its 4-methoxy-2-
(3,4-methylenedioxyphenyl)quinoline ~ analogue  (VII)
(R;+R, = —OCH,0—) were also isolated from the
leaves of Lunasia amara Blanco [2].

(I) Ry =O0CH3; R3,R3, Ry, Rs =H
(II) Rl = OCH3, Rz, R5 = H, R3+R4 = OCHzo_
(III) Rl’ Rz, R5 = H, R3+R4 = _OCHzo_
(IV) Rl, Rz, R5 = OCH3, R3+R4 - _OCHzo_
(V) R1 = H, Rz, R5 = OCH3, R3+R4 = _OCHzo_
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Figure 1. Generalized structure of 2-arylquinolin-4(1H)-one.

Over the last years, the interest in 2-arylquinolin-
4(1H)-ones and their analogues have been the subject of
extensive study as potential anti-tumor, anti-mitotic, and
cytotoxic agents [4-8] as well as anti-platelet agents
[9,10]. 2-(3-Methoxyphenyl)-6-(1-pyrrolinyl)quinolin-
4(1H)-one (VIII) (R; = H, R, = OCHs) and 2-(2-fluoro-
phenyl)-6-(1-pyrrolinyl)quinolin-4(1H)-one analogue (IX)
(R;y = F, R, = H), for example, are potent inhibitors of
tubulin polymerization (ICsy = 0.44 pM (I); 0.46 uM
(IX)) and exhibit anti-mitotic anti-tumor activity at low
concentrations having effects comparable to those of col-
chicine, podophyllotoxin, and combretastatin A-4 [4,5].
The 4-substituted quinoline moiety constitutes the frame-
work for several nitrogen-containing heterocycles known
to exhibit cytotoxic [11], anti-leishmanial [12], anti-ma-
larial [13], and anti-bacterial properties [14]. Aryl substi-
tuted quinolines have also been reported to serve as estro-
gen receptor modulators [15] and also as potent inhibitors
of tyrosine kinase PDGF-RTK [16]. The naturally occur-
ring 4-methoxy-2-phenylquinoline (VI) and its 4-
methoxy-2-(3,4-methylenedioxyphenyl)quinoline analogue
(VII) [8] have recently been found to exhibit inhibitory
activity against Mycobacterium tuberculosis Hz;Rv [17].

(IX) Rl = F, R2 = H

The 2-aryl-4-quinolones are also versatile synthetic
intermediates and several articles continue to appear in
literature describing their synthesis, chemical transfor-
mation, structural properties, and biological activities.
Their versatility as synthetic intermediates is a conse-
quence of 4-quinolone moiety (Fig. 1), which contains

DOI 10.1002/jhet
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Scheme 1. Reagents: (i) (CgHs),0, 140°C, 30 min or EtOH, heat, 2-4 h; (i) (C4Hs),O, 250-260°C.
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several reactive centers (positions 1, 3, and 4) for possi-
ble functionalization and can also enable different
degree of unsaturation. They are known to undergo elec-
trophilic substitution with alkyl derivatives to afford N-
or O-alkylated derivatives or a mixture of the two iso-
mers depending on the nature of the electrophile used
and steric effect on the quinolone moiety. Aromatization
of the 4-quinolone moiety with phosphorus oxychloride
occurs with ease to afford 4-chloroquinolines which are
important intermediates in the synthesis of 2-arylquino-
lines bearing a heteroatom group in the 4-position. Their
o,B-unsaturated framework allows C-3 halogenation to
yield 3-halogeno derivatives, which have been shown to
undergo metal-catalyzed C—C formation to yield poly-
substituted and polynuclear derivatives.

Although the popularity of variously substituted 2-
arylquinolin-4(1H)-ones has been increasing over the
years, their synthesis and transformation into N-alky-
lated or O-alkylated derivatives have never been
reviewed. We wish to address this need by reviewing
various methods developed to-date for the synthesis of

O
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2-arylquinolin-4(1H)-ones and their transformation to N-
alkylated and O-alkylated derivatives.

2. SYNTHESIS OF 2-ARYLQUINOLIN-4
(1H)-ONES

2.1. From arylamines and carbonyl derivatives. Sev-
eral articles continue to appear in literature describing
novel methods for the synthesis of 2-arylquinolin-4(1H)-
ones. In one of the earliest methods, anthranilic acid or
its ester derivative was heated with the acetal of an
alkyl aryl ketone to yield the corresponding 2-arylquino-
lin-4(1H)-one [18]. Arylamines were also condensed
with an ethyl benzoylacetate derivative in the presence
of polyphosphoric acid (PPA) to afford 2-arylquinolin-
4(1H)-ones [6,9,19]. Both these pathways are, however,
not suitable for the synthesis of 2-arylquinolin-4(1H)-
ones with multiple substituents. Anilinoarylidenemalo-
nates derived from B-chloroarylidenemalonates and so-
dium diethyl malonate were previously cyclized at
250°C to afford 2-aryl-3(ethoxycarbonyl)-4-quinolones

Scheme 2
R! 0
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Scheme 3. Reagents: (i) Pd(PPh;),Cl,, THF, heat, 2 h.
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NH,
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[20]. Lai and coworkers also subjected anilinoarylidene-
malonates derived from carboxymidoyl chlorides to ther-
molysis at 170°C to afford 2-aryl-3(ethoxycarbonyl)-4-
quinolones [8]. Thermolysis of the mono-ethoxycarbonyl
vinyl derivatives, which are formed in comparable
yields along with the anilinoarylidenemalonates afforded
the 2-aryl-4-quinolones. In another development, 2,2-di-
methyl-5-methylthioalkylidene-1,3-dioxane-4,6-diones 1
(R = Me, Et, Pr, Ph), which are easily prepared from
Meldrum’s acid (2,2-dimethyl[1,3]dioxane-4,6-dione)
were condensed with substituted arylamines 2 (X = H,
Me, NO,, Br, Cl) in refluxing diphenyl ether or ethanol
with (isolated yields: 54-57%) or without isolating the
resulting intermediate 3 to afford 2-alkyl- and 2-arylqui-
nolin-4(1H)-ones 4 (60-96%) upon cyclization in Ph,O
at very high temperature (Scheme 1) [21].

2-Arylquinolin-4(1H)-ones were also prepared by con-
densing ethyl benzoylacetate with aniline in ethanol at
50°C followed by heating the resulting intermediate at
240-250°C in diphenyl ether [22,23]. A series of substi-
tuted 2-aryl-4-quinolones 7 has been synthesized in good
yields (16-88%) from 1-aryl-5-phenylpyrrole-2,3-diones 5
substituted at the 4-position with cyano (R' = CN) or me-
thoxycarbonyl group (R' = CO,Me) and 6 via flash ther-
molysis (FVT) at 600°C (Scheme 2) [24].

2.2. From 2-aminochalcones or 2-aryl-1,2,3,4,-tetra-
hydroquinol-4-ones. 2’-Amonichalcones and their iso-
meric 2-aryl-1,2,3 4-tetrahydro-4-quinolone derivatives

0]

have also been used as substrates for the synthesis of 2-
arylquinolin-4(1H)-ones. The 2’-amonichalcones 8,
which are readily accessible via Murphy-Watanism’s
aldol condensation of 2-aminoacetophenone with benzal-
dehyde derivative [25,26], have been found to undergo
intramolecular cyclization in THF in the presence of
dichloro-bis(triphenylphosphine)palladium(II) to afford
the corresponding 2-arylquinolin-4(1H)-ones 9 in good
yields (55-85%) (Scheme 3) [27]. The main disadvant-
age of this reaction is the use of stoichiometric amounts
of the organometallic reagent and column chromato-
graphic separation of the NH-4-oxo derivatives that are
almost insoluble in many organic solvents.

Thallium(IIl) p-tolylsulfonate (TTS) in dimethoxy-
ethane (DME) [28] or iodobenzene diacetate in methano-
lic KOH [29,30] were used before to dehydrogenate 2-
aryl-1,2,3 4-tetrahydro-4-quinolones 10 to 2-aryl-4-quino-
lones 9 (Scheme 4). The 2-aryl-1,2,3.4-tetrahydro-4-quino-
lones are themselves easily obtainable through acid-cata-
lyzed cyclization of the isomeric 2-amonichalcones 8
[25,26]. Lee and Youn, recently used zinc chloride in ace-
tonitrile to cyclize series of 2-amonichalcones to afford
the corresponding isomeric 2-aryl-1,2,34-tetrahydro-4-
quinolone derivatives in high yields (>85%) [30]. The 2-
aryl-1,2,3,4-tetrahydro-4-quinolones bearing substituents
on the fused benzo ring can also be prepared through
direct one-pot acid-catalyzed condensation of substituted

Scheme 4. Reagents: (i) H;PO,4, EtOH, heat; (ii) TTS, DME, heat or toluene, heat.

(0]

(@

NH, Ar

Journal of Heterocyclic Chemistry

O

Ar

DOI 10.1002/jhet



January 2010

Synthesis of 2-Arylquinolin-4(1H)-ones and Their Transformation to N-Alkylated 5

and O-Alkylated Derivatives

Scheme 5. Reagents: (i) ArCHO; HCIO,, HC(OEt);; (ii) 25% NH; (aq).
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aniline derivatives with ethyl benzoylacetate in refluxing
toluene [22,23].

The other approach to 2-arylquinolones makes use of
flavylium salts 12 derived from the condensation of 2-
hydroxyacetophenones 11 with aryldehydes in ethyl
orthoformate in the presence of potentially explosive
perchloric acid (Scheme 5) [31]. The resulting flavylium
salt is then treated with aqueous ammonia to release the
corresponding 2-aryl-4-quinolone 13. A modification of
this procedure employs trifluoroacetic acid or trifluoro-
methanesulfonic acid in ethyl orthoformate or dichloro-
methane to afford flavylium salts in high yields, how-
ever, the expected 2-aryquinolones are isolated in rela-
tively low yields (18-59%) [32].

2.3. Synthesis from 2-aminoacetophenone and aroyl-
chlorides. The most convenient and high yielding
method usually used for the synthesis of 2-arylquino-
lin-4(1H)-ones involves the use of 2-aminoacetophe-
nones 14 and substituted benzoyl chlorides 15 as start-
ing material [5,7,33,34]. The resulting N-benzoyl-2-
aminoacetophenone 16 is cyclized under reflux using
t-BuOK in t-BuOH to afford the corresponding 2-aryl-
quinolin-4(1H)-one 17 in high yield (60-80%) and pu-
rity (Scheme 6).

The reaction has also been carried out under micro-
wave conditions involving irradiation of acylated 2’-ami-

noacetophenone in the presence of sodium hydroxide to
afford 2-aryl-4-quinolones [35].

2.4. Methods involving organometallic reagents. Less
traditional syntheses of 2-arylquinolin-4(1H)-ones,
which make use of transitional metals have been devel-
oped. Palladium-catalyzed carbonylation of 2-haloaniline
18 in the presence of terminal acetylenes 19 under
proper conditions (20 kg/cm? of CO at 120°C) afforded
a variety of 2-substituted quinolin-4(1H)-ones 20
(Scheme 7) [36]. Carbonylation of series of o-iodoani-
lines and terminal alkynes in the presence of palladium
catalyst [PdCl,(dppf)] afforded 2-aryl-4-quinolones in
good yields (62—83%) [37]. The reaction was found to
proceed well in both secondary (diethylamine) and terti-
ary amines (triethylamine) and in benzene containing 4
equivalent of diethylamine.

Variously substituted 2-arylquinolin-4(1H)-ones 23
can also be obtained in appreciable yields (72-97%) via
sequential Cu-catalyzed amidation of halophenones 21
followed by a base-promoted Camps cyclization of the
resulting N-(2-ketoaryl)amides 22 (Scheme 8) [38].

A mild and high yielding (>85%) one-pot synthesis of
2-arylquinolin-4(1H)-ones 26 via sequential palladium-
catalyzed amidation of 2’-bromoacetophenone derivatives
24 followed by base-promoted intramolecular cyclization
of 25 has been recently developed (Scheme 9) [39].

Scheme 6. Reagents: (i) NEt;, THF, 0°C to r.t. 2 h; (ii) t-BuOK, t-BuOH, heat, 20 h.
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Scheme 7. Reagents: (i) CO, PdCl,(PPh;), or PdCl,(dppf), NHEt,, 120°C.

o]

18(X=Br, 1) 19

R, R’ = H (90%)
R =H, R’ = -OMe (95%)
R =H, R’ = -COEt (85%)
R, R’ = -OCI1,0- (88%)

These novel methods that make use of organometallic
reagents are high yielding and allow synthesis of vari-
ously substituted potentially tautomeric 2-arylquinolin-
4(1H)-ones [40].

3. REACTIONS OF 2-ARYLQUINOLIN-
4(1H)-ONES

New findings on the biological properties of 2-aryl-4-
quiolones reveal a need to increase the diversity of sub-
stituents around the 4-quinolone framework. This moiety
contains several reactive centers for possible functionali-
zation to yield novel systems, which can themselves
serve as substrates for further chemical transformation.
The 2-arylquinolin-4(1H)-ones have been found to
undergo C-3 halogenation, N- or O-alkylation, and oxi-
dative aromatization.

3.1. C-3 Halogenation. Halogenated heterocyclic
systems continue to attract considerable attention
because of the profound effect a halogen atom can have
on the physical, chemical, and biological properties of
such substances. Iodine-Na,COj3; mixture in THF at

20

room temperature was previously used to effect C-3
iodination of 2-arylquinolin-4(1H)-ones 27 to afford the
corresponding 2-aryl-3-iodoquinolin-4(1H)-ones 28 (X
= I) in high yield and purity (Scheme 10) [41]. The
NH-4-oxo derivatives can also be iodinated using io-
dine—ammonium cerium nitrate (CAN) mixture in aceto-
nitrile at 70-80°C to afford 2-aryl-3-iodoquinolin-4(1H)-
ones [42]. On the other hand, the analogous 2-aryl-3-
bromoquinolin-4(1H)-ones 28 (X = Br) were prepared
in high yield and purity from the corresponding 2-aryl-
quinolin-4(1H)-ones using pyridinium tribromide in ace-
tic acid at room temperature (Scheme 10) [41].

3.2. Alkylation of 2-arylquinolin-4(1H)-ones and
their derivatives. The synthetic versatility of the poten-
tially tautomeric 4-quinolone framework enables inter-
conversion between the NH-4-oxo precursors and their
O- or N-methylated derivatives. Comparison of spectro-
scopic data (IR, NMR, and ms) of these fixed deriva-
tives (O- or N-alkylated) with those of the correspond-
ing precursors (NH-4-oxo) has been used to resolve
uncertainties on the 2-substituted 4-quinolone versus 2-
substituted 4-quinolinol tautomeric equilibrium [40].
The naturally occurring 4-methoxy-2-phenylquinoline 29

Scheme 8. Reagents: (i) Amide, Cul, ligand, toluene, heat; (ii) NaOH, 1,4-dioxane, heat.
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Scheme 9. Reagents: (i) Pd,(dba);, xantphos, amide, Cs,CO3, dioxane, heat; (ii) t-BuONa, t-BuOH, heat.

O

A CH,

R ()

Br

24

was previously treated with HCl in methanol under
reflux to yield the 2-phenylquinol-4-one 30, which was
in turn converted to the NMe-4-oxo derivative 31 using
dimethyl sulfate under basic conditions [43]. On the
other hand, when heated with Mel, the 4-methoxyquino-
line 29 yielded the dimethylated salt 32, which upon
treatment with a base afforded the isomeric 1-methyl-2-
phenylquinoline 31 (Scheme 11).

The most classical method used for alkylation of 2-
arylquinolin-4(1H)-ones involves subjecting the NH-4-
oxo derivative to a base followed by quenching with the
corresponding alkyl halide. Methylation of the 2-substi-
tuted-4(1H)-quinolones 33 using Mel-K,CO; mixture in
DMF was reported to afford a mixture of the O-methyl-
ated 34 and N-methylated derivatives 35 (Scheme 12)
[44] while on the other hand, NaH and Mel in DMF
afforded the O-methylquinoline derivatives, exclusively
[45]. Tt was, however, discovered by Kuo and coworkers
that the product mixture comprised of N- and O-methyl-
ated derivatives in the ratio 2:3 [46]. Alkylation of 2-phe-
nylquinolin-4(1H)-one with methyl iodide or various pri-
mary alkyl, allyl, and benzyl halides in DMF in the pres-
ence of NaH, on the other hand, afforded the correspond-
ing N-alkylated derivatives as sole products [47]. Enol
ethers were also isolated as sole products when 2-(2-
fluorophenyl)-6,7-methylenedioxyquinolin-4(1H)-one was
treated with NaH in DMF followed by alkylation with
ethyl chloroacetate or ethyl 4-chlorobutyrate [5]. Alkyla-
tion of 2-arylquinolin-4(1H)-ones with various alkyl hal-
ides also afforded the corresponding O-alkylated deriva-
tives, exclusively [10]. Methylation was, however, found
not to be regioselective under these conditions affording
mixtures of O-methylated and N-methylated isomers.

It was also observed that the presence of substituent
at C-5 or C-3 position has significant effect on the
regioselectivity of alkylation of the quinolone deriva-
tives. Treatment of 5,7-dimethoxy-2-phenylquinolin-
4(1H)-one 36 (R, R" = OMe) with Mel-K,CO3; mixture
in DMF afforded O-methylated derivative 37 as the sole
product (Scheme 13) [48]. On the other hand, under
similar reaction conditions, 5-hydroxy-7-methoxy-2-phe-

Journal of Heterocyclic Chemistry
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nyl-4-quinolone 36 (R = OH, R’ = OMe) afforded both
O- 37 and N-methylated derivatives 38 [46] with N-
methylated derivative as major product (ratio 9:1 N-
alkylated vs. O-alkylated) [49]. Hadjeri et al. attributed
the observed non-regioselectivity to the tautomeric equi-
librium between the NH-4-oxo and its quinolinol isomer
which is favored by chelation effect of the 5-OH group
[48]. Treatment of the analogous 5-ethyl-2-phenylquino-
lin-4(1H)-one 36 (R = Et, R’ = H) with NaH-Mel mix-
ture in THF afforded both O-methylated 37 (R” = Me)
and N-methylated isomers 38 (R” = Me) in the ratio
1:5.4 [10]. On the other hand, under similar reaction
conditions ethyl iodide and various ethoxycarbonylalkyl
halides afforded only the corresponding O-alkylated
products 37 (R = Et, R* = H; R” = Et, CH,CO,Et,
CH,CO,H) [10].

The 3-halogenated NH-4-oxo derivatives 39 (R’ = Br,
I) were treated with NaH in THF to afford the N-meth-
ylated derivatives 40 as the only products (Scheme 14)
[41,50,51]. The observed regioselectivity was attributed
to the preponderance of these derivatives as the NH-4-
oxo tautomers in polar medium and solid state [40,51].
2-Aryl-3-bromo-1-methylquinolin-4(1H)-ones 40 (X =
Br) were also prepared directly from the corresponding
2-aryl-1-methylquinolin-4(1H)-one precursors in high
yields (77-93%) using pyridinium tribromide in acetic
acid at room temperature [41].

Scheme 10. Reagents: (i) I,, Na,CO;, THF, heat for X = I
CsHsNH.Brs, AcOH, r.t. for X = Br.
0

@

N CeHsR N CHR

27 28

X = I; R = H (85%), 4-F (83%), 4-C1 (90%), 4-OMe (83%)
X = Br; R = H (94%), 4-F (95%), 4-C1 (91%), 4-OMe (90%)
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Scheme 11. Reagents: (i) HCl, MeOH, heat; (ii) Mel, heat; (iii) Me,SO,, NaOH; (iv) NaOH.
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In another development, series of pharmaceutically
important N-methylated 2-aryl-4-quinolone alkaloids 44
were prepared by methylation of 2-arylquinolines 43
with methyl trifluoromethanesulfonate followed by
oxidation with potassium ferricyanate [K;3Fe(CN)¢]
(Scheme 15) [52]. 2-Arylquinoline 43 used as substrate
in this investigation were, in turn, synthesized by Diels—
Alder reaction of substituted 1,2,3-benzotriazine 41 pre-
pared by oxidation of 1-amino-1H-indazole with lead
tetraacetate, and pyrrolidine enamine of substituted ace-
tophenone 42 in dry chloroform in the presence of zinc
bromide under reflux [52].

Although primary alkyl halides and benzyl halides
afforded the O-alkylated derivatives exclusively, the
problem of non-regioselectivity with methylation neces-
sitates the development of sure-fire methods for the
direct and regioselective synthesis of either N- or O-
methylated isomers. Very few methods have been devel-
oped to-date for the direct synthesis of N-alkyl 2-aryl-
quinolin-4(1H)-ones.

3.2.1. Direct synthesis of N-alkylated 2-arylquino-linones. The
shortest route (one-step synthesis) reported to-date for
the synthesis of 2-aryl-1-methyl-4-quinolones 47 in
appreciable yields involves the condensation of lithium
enolates of acetophenone derivatives 46 with substituted

0]

IT] Ph (iii) o
H

30

OMc N Ph
|
(iv) C
X

®

N/I@ Ph
CHy
32

N-methylisatoic anhydrides 45 (Scheme 16) [46,53].
Although the reaction is high yielding, each reaction
when using different substrates has its unique tempera-
ture requirements for completion.

Several N-methylated 2-aryl-4-quinolinones were pre-
pared in moderate yields by treatment of resin bound
flavylium salts with methylamine following a similar
procedure outlined in Scheme 5 [32]. In another devel-
opment involving synthesis of N-alkylated 2-arylquino-
lone derivatives, 2-aminoacetophenone 48 was first
condensed with various aldehydes followed by selective
reduction using NaBH;CN to yield 49 (Scheme 17). The
alkylated derivatives 49 were, in turn, acylated using
various benzoyl chlorides and the resulting amides 50
were cyclized using t-BuOK in refluxing t-BuOH to
afford 1-benzyl-2-arylquinolin-4(1H)-ones 51 [54].

Palladium-catalyzed carbonylation of N-ethyl-2-iodoa-
niline 52 with phenylacetylene 53 in diethylamine
afforded a mixture of enamine 54 (52%) and 2-phenylqui-
noline 55 (20%) (Scheme 18). Further heating of the enam-
ine in THF in the presence of NaH effected smooth cycli-
zation leading to quantitative yield of the quinolone [36].

A direct one-pot synthesis of 2-aryl-1-methylquinolin-
4(1H)-ones 58, which involves treatment of N-arylami-
doacetophenone derivatives 56 with Mel in presence of

Scheme 12. Reagents: (i) Mel, NaH in THF or DMF; Mel, K,CO; in DMF or Acetone.
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Scheme 13. Reagents: (i) K,COs3, R”X, DMF or NaH, R”X, THF.

36

NaH in THF was recently described (Scheme 19) [40].
The corresponding N-methylated arylamidoacetophenone
derivatives 57 were isolated in trace amounts (>5%).

Friedel-Crafts acylation of 59 using stannic chloride
(SnCly) as catalyst afforded 60, which upon cyclization
with t-BuOK in t-BuOH yielded the corresponding 2-
aryl-1-methylquinolin-4(1H)-ones 61 (Scheme 20) [55].
This cyclization previously worked well for the synthe-
sis of 2-aryl-3,5,7-trimethoxy-4-quinolones from N-phe-
nylamido methoxyacetophenones prepared, in turn, via
stannic chloride-catalyzed Friedel-Crafts acylation of
3,5-dimethoxyphenyl-N-phenylamide with methoxyace-
tyl chloride in 1,2-dichloroethane [56].

Todocyclization of the dimethylamino systems 62
using iodine in dichloromethane proved highly selective
for the 6-endo-digonal pathway to afford 2-substituted
3-iodo-1-methylquinolin-4(1H)-ones 63 in high yield
94%, R = 4-MeO) (Scheme 21) [57].

3.2.2. Direct synthesis of O-alkylated 2-arylquinolines. An
alkoxide-mediated cyclization of Schiff bases 64 derived
from the reaction of trifluoromethylaniline with alkyl or
heterophenyl ketones is reported to afford 2-aryl-4-
alkoxyquinoline 65, exclusively [58,59]. In this reaction,
the Schiff base is treated with t-KOBu in THF under
reflux to afford the alkoxyquinoline derivative (OR = t-
BuO) in high yield (83%) (Scheme 22) [58]. On the
other hand, under similar reaction conditions, use of so-
dium or potassium ethoxide afforded the corresponding
4-ethoxy-2-phenylquinoline (R = Et) in lower yield
(25%). The 2,3,4-trisubstituted quinoline (R" = CHs; R”
= t-Bu) was prepared in 52% yield following similar
procedure [58].

Scheme 14. Reagents: (i) NaH, Mel, THF, r.t. 18 h.
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One of the recent developments in the synthesis of 4-
alkoxyquinolines involved direct synthesis of the natu-
rally occurring 4-alkoxy-2-arylquinoline derivatives
from the corresponding 2-aryl-1,2,3,4-tetrahydro-4-quin-
olones using oxidative reagents (Scheme 23). Oxidation
of 2-aryl-1,2,3,4-tetrahydro-4-quinolones 66 to 2-aryl-4-
methoxyquinolines 67 was effected with either thalliu-
m(III) nitrate [60] or [hydroxyl(tosyloxy)iodo]benzene
[61] in trimethyl orthoformate in the presence of cata-
lytic amount of perchloric acid. Molecular iodine in
refluxing methanol was also found to effect oxidative ar-
omatization of 2-aryl-1,2,3,4-tetrahydro-4-quinolones 66
to 2-aryl-4-methoxyquinolines 67 [62]. Recently, Kumar
and coworkers used FeCl;-6H,O in methanol to effect
oxidative aromatization of series of 2-aryl-1,2,3 4-tetra-
hydroquinolin-4-ones to afford 2-aryl-4-methoxyquino-
lines in 70-85% yields [63]. FeCl;-6H,O in methanol
was later used by these authors to effect direct one-pot
synthesis of series of 2-aryl- and 2-heteroaryl-4-methox-
yquinolines (55-72%) and their flavones derivatives
from the corresponding 2-azachalcones and 2-hydroxy-
chalcones, respectively [64].

Series of 2,4-disubstituted quinolines 69 (X = Br, I,
SEt, SPh) including 4-alkoxy-2-arylquinolines (X =
OEt, OMe, OAr) were prepared in moderate to high
yields (33-98%) from the corresponding [-(2-amino-
phenyl)-o,B-ynones 68 using various nucleophiles
(Scheme 24) [65].

The 4-alkoxy-2-arylquinolines 72 (R’ = Me, Et, i-Pr)
were recently prepared in low to moderate yields (10—
81%) from 2-(2-(trimethylsilyl)ethynyl)anilines 70 and
aryldehydes 71 in the presence of sulfuric acid in alco-
hols (Scheme 25) [66].

Although simple and efficient, the above reagents
used for direct oxidative aromatization of 2-aryl-1,2,3,4-
tetrahydro-4-quinolones cannot be used for the synthesis
of 2,3-disubstituted 4-alkoxyquinoline derivatives. On
the other hand, the Skraup, Dobner-Miller, Friedldnder
and Combes reactions, which are well known classical
methods for the synthesis of polysubstituted quinolines,
cannot be adapted for the synthesis of quinoline deriva-
tives bearing 4-alkoxy group [67]. Consequently, indi-
rect methods remain the method of choice for the
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Scheme 15. Reagents: (i) ZnBr,, CHCI3, heat, 2 h; (ii) Methyl trifluoromethanesulfonate, heat, 1 h; (iii) K3Fe(CN)s, 20% NaOH, r.t. 2 h.

41 42 43 44

R=R*=H, R4R?= OCH,0
R=R'=R*=H,R’=0H
R=0CH;, R'=R*=R*=H

R=R'=R'=H,R*=H

Scheme 16. Reagents: (i) DIPA, n-BuLi, THF, —65°C, 3.5 h.
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Scheme 17. Reagents: (i) a: PhACHO, C¢Hg; b: NaCNBH;, PPTS, MeOH. (ii) ArC(0O)Cl, NEt;, CH,Cl,. (iii) t-BuOK, t-BuOH.
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Scheme 18. Reagents: (i) CO, PdCl,(PPh;), or PdCl,(dppf), NHEt,, 120°C.
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Scheme 19. Reagents: (i) NaH, Mel, THF, r.t.
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Scheme 20. Reagents: (i) MeCOCl, SnCl,, CH,Cl,, 0°C; (ii) t-BuOK, 30°C.
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synthesis
derivatives.
3.2.3. Indirect synthesis of O-alkylated 2-arylquinolines. In
this approach, the NH-4-oxo derivatives 73 are first con-
verted to the corresponding 4-chloroquinoline deriva-
tives 74 using phosphorus oxychloride under reflux. The
C3 unsubstituted 2-aryl-4-chloroquinolines were also

of polysubstituted O-alkylated quinoline

Scheme 21. Reagents: (i) I,, CH,Cl,.

o) (0]
I
e & 1
X —_—
Ar
NMe; N CyH4R
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62 63
Scheme 22. Reagents: (i) KOR”, THF, heat, 2 h.
OR"
CF4
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—
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R’ = CH3; R” =t-Bu
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61 (R1 = NOz, R2 = C])
(R, = H, R, = 0COMe)

prepared by reaction of Vilsmeier reagent with 2'-azido-
chalcones, which are prepared in turn from the corre-
sponding 2’-amonichalcones by diazotization followed
by treatment with NaN;3 [68]. The 4-chloroquinolines 74
are then reacted with alkoxides or phenoxide ions to

Scheme 23. Reagents: (i) TTN, CH(OR");, HCIO,, 1 h [60]; HTIB,
CH(OR")3, HCIOy4, 1.5 h [61]; I,, MeOH, 2 h [62]; or FeCl;-6H,0,
MeOH, heat, 3 h [63].

66 67

Scheme 24. Reagents: (i) NaOR’, R'OH (R’ = Me, Et).
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Scheme 25. Reagents: (i) H,SO,4, R'OH, heat, 17 h.

OR'

70 71 72

yield the expected 4-phenoxy- or 4-alkoxyquinoline
derivatives 75 (Scheme 26) [69,70]. This approach,
which takes advantage of the ease of displacement of 4-
chlorine atom by nucleophiles has recently been used
for the synthesis of 2,3-disubstituted 4-alkoxyquinoline
derivatives (R’ = Me) that cannot be easily prepared
otherwise. Series of 2-aryl-3-bromo/iodo-4-methoxyqui-

Vol 47

nolines were prepared this way from the corresponding
2-aryl-4-chloro-3-halogenoquinolines [50,51,70].

This indirect approach has also been adapted to
involve the use of organometalic reagents in the synthe-
sis of 2,3-disubstituted 4-alkoxyquinolines. The synthe-
sis of 3-aryl-2-(ethyl/phenyl)-4-phenoxyquinolines 78,
involved initial C-2 coupling of 3-aryl-2,4-dichloroqui-
nolines 76 with alkyl- or aryl-zinc reagents (R,Zn; R =
Et, Ph) followed by displacement of the 4-chlorine atom
from 77 with bromophenol derivative (Scheme 27) [71].

The results of sequential functionalization of 2-aryl-4-
chloro-3-iodoquinolines 73 (X = I) via palladium-cata-
lyzed cross-coupling with phenylboronic acid followed
by displacement of the 4-chloro atom from the resulting
2,3-diaryl-4-chloroquinolines 78 with methoxide ion to
yield 2,3-diaryl-4-methoxyquinolines 79 have recently
been described (Scheme 28). Compounds 79 were also

Scheme 26. Reagents: (i) POCl;, heat, 2 h; (i) NaOMe, THF, heat, 18 h.
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Scheme 27. Reagents: (i) Zn(R'),, PACl;(dppf), K,CO5, THF; (ii) p-BrC¢H,OH, NaOH, DMF, 110°C.
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Scheme 28. Reagents: (a¢) Pd(PPh;),, PhB(OH),, K,CO5;, DMF; (b) NaOMe, THF or DMF, heat; (¢) BBr;, CH,Cl,, r.t.
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prepared via Suzuki—Miyaura cross-coupling of 2-aryl-3-
iodo-4-methoxyquinolines 74 (R = Me, X = I) with
phenylboronic acid [70]. Demethylation of the methoxy
compounds 79 with BBr; in CH,Cl, gave the 2,3-diaryl-
4(1H)-quinolinones 80.

This demethylation represents a convenient synthetic
strategy for the construction of 2,3-diarylquinolin-4(1H)-
ones of potential biological interest that can be obtain-
able only with difficulty otherwise.

4. CONCLUSIONS

Overall, the methods described in this review present
another example showing the potential of 2-arylquinolin-
4(1H)-ones in the synthesis of 2,3-substituted NH-4-oxo
derivatives and their transformation into N-alkylated and
O-alkylated derivatives. Interestingly, O-alkylated and N-
alkylated quinolone derivatives do not feature at all in a
recent review on quinolines by Kouznetsov et al. [72].
Despite the establishment of structural requirements and
optimum reaction conditions suitable for the synthesis of
N-alkylated quinolone derivatives, there is still a growing
need for development of generalized methods for the syn-
thesis of polysubstituted derivatives. On the other hand,
indirect methods, which make use of 4-chloroquinolines
and take advantage of the ease of displacement of the 4-
chloro atom remain the best option for the synthesis of
polysubstituted 4-alkoxyquinolines.
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